Lp -dual geominimal surface areas for the general Lp-intersection bodies

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lp-dual geominimal surface areas for the general Lp-intersection bodies

For 0 < p < 1, Haberl and Ludwig defined the notions of symmetric and asymmetric Lp-intersection bodies. Recently, Wang and Li introduced the general Lp-intersection bodies. In this paper, we give the Lp-dual geominimal surface area forms for the extremum values and Brunn-Minkowski type inequality of general Lp-intersection bodies. Further, combining with the Lp-dual geominimal surface areas, w...

متن کامل

Lp-Dual geominimal surface area

* Correspondence: [email protected] Department of Mathematics, China Three Gorges University, Yichang, 443002, China, Abstract Lutwak proposed the notion of Lp-geominimal surface area according to the Lpmixed volume. In this article, associated with the Lp-dual mixed volume, we introduce the Lp-dual geominimal surface area and prove some inequalities for this notion. 2000 Mathematics Subject Cla...

متن کامل

INTERSECTION BODIES AND Lp-SPACES

In this talk we discuss a new connection between convex geometry and the theory of Lp-spaces. It appears that intersection bodies, one the main objects of convex geometry, are directly related to the concept of embedding of normed spaces in Lp with p < 0. This allows to get new geometric results by extending different facts about Lp-spaces to negative values of p. We present several application...

متن کامل

A Characterization of Lp Intersection Bodies

All GL(n) covariant Lp radial valuations on convex polytopes are classified for every p > 0. It is shown that for 0 < p < 1 there is a unique non-trivial such valuation with centrally symmetric images. This establishes a characterization of Lp intersection bodies. 2000 AMS subject classification: 52A20 (52B11, 52B45)

متن کامل

On Lp-affine surface areas

Let K be a convex body in Rn with centroid at 0 and B be the Euclidean unit ball in Rn centered at 0. We show that limt→0 |K| − |Kt| |B| − |Bt| = Op(K) Op(B) , where |K| respectively |B| denotes the volume of K respectively B, Op(K) respectively Op(B) is the p-affine surface area of K respectively B and {Kt}t≥0, {Bt}t≥0 are general families of convex bodies constructed from K, B satisfying cert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Nonlinear Sciences and Applications

سال: 2017

ISSN: 2008-1898,2008-1901

DOI: 10.22436/jnsa.010.07.14